Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: the π3s Rydberg state.
نویسندگان
چکیده
Excited state unimolecular reactions of some polyenes exhibit localization of their dynamics at a single ethylenic double bond. Here we present studies of the fundamental photophysical processes in the ethylene unit itself. Combined femtosecond time-resolved photoelectron spectroscopy (TRPES) and ab initio quantum chemical calculations was applied to the study of excited state dynamics in cis-butene, trans-butene, trimethylethylene, and tetramethylethylene, following initial excitation to their respective π3s Rydberg states. The wavelength dependence of the π3s Rydberg state dynamics of tetramethylethylene was investigated in more detail. The π3s Rydberg to ππ(∗) valence state decay rate varies greatly with substituent: the 1,2-di- and tri-methyl substituted ethylenes (cis-butene, trans-butene, and trimethylethylene) show an ultrafast decay (∼20 fs), whereas the fully methylated tetramethylethylene shows a decay rate of 2 to 4 orders of magnitude slower. These observations are rationalized in terms of topographical trends in the relevant potential energy surfaces, as found from ab initio calculations: (1) the barrier between the π3s state and the ππ∗ state increases with increasing methylation, and (2) the π3s∕ππ∗ minimum energy conical intersection displaces monotonically away from the π3s Franck-Condon region with increasing methylation. The use of systematic methylation in combination with TRPES and ab initio computation is emerging as an important tool in discerning the excited state dynamics of unsaturated hydrocarbons.
منابع مشابه
Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas
Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate an experimental approach towards this goal by utilizing an ultracold Rydberg gas generated with a broadband picosecond laser pulse. We follow the ultrafast...
متن کاملExperimentally probing the three-body predissociation dynamics of the low-lying Rydberg states of H3 and D3
Charge-exchange neutralization of H3 + with Cs allows preparation of the low-lying Rydberg states of H3. These states are predissociated by the repulsive ground state and may play roles as intermediates in the dissociative recombination of H3 + + e. Translational spectroscopy and measurements of product momentum partitioning in three-body dissociative charge exchange of fast (12 keV) H3 + and D...
متن کاملInteracting Rydberg and valence states in radicals and molecules: experimental and theoretical studies
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to da...
متن کاملStimulated Raman adiabatic passage for improved performance of a cold-atom electron and ion source
We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold-atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 82%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create e...
متن کاملObservation of ultrafast NH3 (Ã) state relaxation dynamics using a combination of time-resolved photoelectron spectroscopy and photoproduct detection.
The ultrafast excited state relaxation of ammonia is investigated by resonantly exciting specific vibrational modes of the electronically excited NH(3) (Ã) state using three complementary femtosecond (fs) pump-probe techniques: time-resolved photoelectron, ion-yield and photofragment translational spectroscopy. Ammonia can be seen as a prototypical system for studying non-adiabatic dynamics and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 16 شماره
صفحات -
تاریخ انتشار 2011